Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Fish Physiol Biochem ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367082

RESUMO

The present study aims to investigate nutritional programming through early starvation in the European seabass (Dicentrarchus labrax). European seabass larvae were fasted at three different developmental periods for three durations from 60 to 65 dph (F1), 81 to 87 dph (F2), and 123 to 133 dph (F3). Immediate effects were investigated by studying gene expression of npy (neuropeptide Y) and avt (Arginine vasotocin) in the head, while potential long-term effects (i.e., programming) were evaluated on intermediary metabolism later in life (in juveniles). Our findings indicate a direct effect regarding gene expression in the head only for F1, with higher avt mRNA level in fasted larved compared to controls. The early starvation periods had no long-term effect on growth performance (body weight and body length). Regarding intermediary metabolism, we analyzed related key plasma metabolites which reflect the intermediary metabolism: no differences for glucose, triglycerides, and free fatty acids in the plasma were observed in juveniles irrespective of the three early starvation stimuli. As programming is mainly linked to molecular mechanisms, we then studied hepatic mRNA levels for 23 key actors of glucose, lipid, amino acid, and energy metabolism. For many of the metabolic genes, there was no impact of early starvation in juveniles, except for three genes involved in glucose metabolism (glut2-glucose transporter and pk-pyruvate kinase) and lipid metabolism (acly-ATP citrate lyase) which were higher in F2 compared to control. Together, these results highlight that starvation between 81 to 87 dph may have more long-term impact, suggesting the existence of a developmental window for programming by starvation. In conclusion, European seabass appeared to be resilient to early starvation during larvae stages without drastic impacts on intermediary metabolism later in life.

2.
PLoS One ; 17(9): e0273779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048785

RESUMO

Sex change occurs as a usual part of the life cycle for many teleost fish and the modifications involved (behavioural, gonadal, morphological) are well studied. However, the mechanism that transduces environmental cues into the molecular cascade that underlies this transformation remains unknown. Cortisol, the main stress hormone in fish, is hypothesised to be a key factor linking environmental stimuli with sex change by initiating gene expression changes that shift steroidogenesis from oestrogens to androgens but this notion remains to be rigorously tested. Therefore, this study aimed to experimentally test the role of cortisol as an initiator of sex change in a protogynous (female-to-male) hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). We also sought to identify potential key regulatory factors within the head kidney that may contribute to the initiation and progression of gonadal sex change. Cortisol pellets were implanted into female spotty wrasses under inhibitory conditions (presence of a male), and outside of the optimal season for natural sex change. Histological analysis of the gonads and sex hormone analyses found no evidence of sex change after 71 days of cortisol treatment. However, expression analyses of sex and stress-associated genes in gonad and head kidney suggested that cortisol administration did have a physiological effect. In the gonad, this included upregulation of amh, a potent masculinising factor, and nr3c1, a glucocorticoid receptor. In the head kidney, hsd11b2, which converts cortisol to inactive cortisone to maintain cortisol balance, was upregulated. Overall, our results suggest cortisol administration outside of the optimal sex change window is unable to initiate gonadal restructuring. However, our expression data imply key sex and stress genes are sensitive to cortisol. This includes genes expressed in both gonad and head kidney that have been previously implicated in early sex change in several sex-changing species.


Assuntos
Hidrocortisona , Perciformes , Androgênios/metabolismo , Animais , Feminino , Peixes/metabolismo , Gônadas/metabolismo , Hidrocortisona/metabolismo , Masculino , Perciformes/metabolismo , Processos de Determinação Sexual
3.
Fish Physiol Biochem ; 48(4): 1117-1135, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35917042

RESUMO

In this study, we aimed to investigate the relationship between cortisol and the determination of sexual fate in the commercially important European sea bass (Dicentrarchus labrax). To test our hypothesis, we designed two temperature-based experiments (19 ℃, 21 ℃ and 23 ℃, experiment 1; 16 ℃ and 21 ℃, experiment 2) to assess the effects of these thermal treatments on European sea bass sex determination and differentiation. In the fish from the first experiment, we evaluated whether blood cortisol levels and expression of stress key regulatory genes were different between differentiating (149 to 183 dph) males and females. In the second experiment, we assessed whether cortisol accumulated in scales over time during the labile period for sex determination as well as the neuroanatomical localisation of brain cells expressing brain aromatase (cyp19a1b) and corticotropin-releasing factor (crf) differed between males and females undergoing molecular sex differentiation (117 to 124 dph). None of the gathered results allowed to detect differences between males and females regarding cortisol production and regulatory mechanisms. Altogether, our data provide strong physiological, molecular and histochemical evidence, indicating that in vivo cortisol regulation has no major effects on the sex of European sea bass.


Assuntos
Bass , Animais , Bass/fisiologia , Feminino , Hidrocortisona , Masculino , Diferenciação Sexual/genética
4.
Alzheimers Res Ther ; 14(1): 57, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449033

RESUMO

BACKGROUND: To evaluate a wide range of optical coherence tomography (OCT) parameters for possible application as a screening tool for cognitively healthy individuals at risk of Alzheimer's disease (AD), assessing the potential relationship with established cerebrospinal fluid (CSF) core AD biomarkers and magnetic resonance imaging (MRI). METHODS: We studied 99 participants from the Valdecilla Study for Memory and Brain Aging. This is a prospective cohort for multimodal biomarker discovery and validation that includes participants older than 55 years without dementia. Participants received a comprehensive neuropsychological battery and underwent structural 3-T brain MRI, lumbar puncture for CSF biomarkers (phosphorylated-181-Tau (pTau), total Tau (tTau), beta-amyloid 1-42 (Aß 1-42), and beta-amyloid 1-40 (Aß 1-40)). All individuals underwent OCT to measure the retinal ganglion cell layer (GCL), the retinal nerve fiber layer (RFNL), the Bruch's membrane opening-minimum rim width (BMO-MRW), and choroidal thickness (CT). In the first stage, we performed a univariate analysis, using Student's t-test. In the second stage, we performed a multivariate analysis including only those OCT parameters that discriminated at a nominal level, between positive/negative biomarkers in stage 1. RESULTS: We found significant differences between the OCT measurements of pTau- and tTau-positive individuals compared with those who were negative for these markers, most notably that the GCL and the RNFL were thinner in the former. In stage 2, our dependent variables were the quantitative values of CSF markers and the hippocampal volume. The Aß 1-42/40 ratio did not show a significant correlation with OCT measurements while the associations between pTau and tTau with GCL were statistically significant, especially in the temporal region of the macula. Besides, the multivariate analysis showed a significant correlation between hippocampal volume with GCL and RNFL. However, after false discovery rate correction, only the associations with hippocampal volume remained significant. CONCLUSIONS: We found a significant correlation between Tau (pTau) and neurodegeneration biomarkers (tTau and hippocampus volume) with GCL degeneration and, to a lesser degree, with damage in RFNL. OCT analysis constitutes a non-invasive and unexpensive biomarker that allows the detection of neurodegeneration in cognitively asymptomatic individuals.


Assuntos
Doença de Alzheimer , Células Ganglionares da Retina , Doença de Alzheimer/patologia , Biomarcadores , Lâmina Basilar da Corioide/metabolismo , Humanos , Estudos Prospectivos , Retina , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos
5.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880131

RESUMO

In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species. We used the European sea bass (Dicentrarchus labrax) as a model and combined genomic (using a single nucleotide polymorphism chip) and transcriptomic (RNA-Sequencing) approaches to thoroughly depict this polygenic sex determination system and its interaction with temperature. We estimated genetic sex tendency (eGST), defined as the estimated genetic liability to become a given sex under a liability threshold model for sex determination, which accurately predicts the future phenotypic sex. We found evidence that energetic pathways, concerning the regulation of lipids and glucose, are involved in sex determination and could explain why females tend to exhibit higher energy levels and improved growth compared to males. Besides, early exposure to high-temperature up-regulated sox3, followed by sox9a in individuals with intermediate eGST, but not in individuals showing highly female-biased eGST, providing the most parsimonious explanation for temperature-induced masculinization. This gonadal state was maintained likely by DNA methylation and the up-regulation of several genes involved in histone modifications, including jmjd1c Overall, we describe a sex determination system resulting from continuous genetic and environmental influences in an animal. Our results provide significant progress in our understanding of the mechanisms underlying temperature-induced masculinization in fish.


Assuntos
Bass/genética , Regulação da Temperatura Corporal/genética , Genótipo , Herança Multifatorial , Processos de Determinação Sexual/genética , Animais , Tamanho Corporal , Regulação da Temperatura Corporal/fisiologia , Metilação de DNA , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Gônadas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Reprodutibilidade dos Testes , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Temperatura
6.
PeerJ ; 8: e10323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240644

RESUMO

Many teleost fishes undergo natural sex change, and elucidating the physiological and molecular controls of this process offers unique opportunities not only to develop methods of controlling sex in aquaculture settings, but to better understand vertebrate sexual development more broadly. Induction of sex change in some sequentially hermaphroditic or gonochoristic fish can be achieved in vivo through social manipulation, inhibition of aromatase activity, or steroid treatment. However, the induction of sex change in vitro has been largely unexplored. In this study, we established an in vitro culture system for ovarian explants in serum-free medium for a model sequential hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). This culture technique enabled evaluating the effect of various treatments with 17ß-estradiol (E2), 11-ketotestosterone (11KT) or cortisol (CORT) on spotty wrasse ovarian architecture for 21 days. A quantitative approach to measuring the degree of ovarian atresia within histological images was also developed, using pixel-based machine learning software. Ovarian atresia likely due to culture was observed across all treatments including no-hormone controls, but was minimised with treatment of at least 10 ng/mL E2. Neither 11KT nor CORT administration induced proliferation of spermatogonia (i.e., sex change) in the cultured ovaries indicating culture beyond 21 days may be needed to induce sex change in vitro. The in vitro gonadal culture and analysis systems established here enable future studies investigating the paracrine role of sex steroids, glucocorticoids and a variety of other factors during gonadal sex change in fish.

7.
PLoS One ; 15(9): e0239484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32956392

RESUMO

OBJECTIVE: To assess and compare the involvement of choroidal thickness (CT) in patients with mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (AD) defined by amyloid PET and healthy controls (HC). METHODS: Sixty-three eyes from 34 AD patients [12 eyes (19.0%) with dementia and 51 eyes (80.9%) with MCI], positive to 11C-labelled Pittsburgh Compound-B with positron emission tomography (11C-PiB PET/CT), and the same number of sex- and age-paired HC were recruited. All participants underwent enhanced depth imaging optical coherence tomography (EDI-OCT) assessing CT at 14 measurements from 2 B-scans. Paired Student t-test was used to compare CT measurements between MCI, dementia and sex- and age-paired HC. A univariate generalized estimating equations model (GEE) test was performed to compare MCI and dementia individually with all HC included. RESULTS: Compared with HC, eyes from patients with positive 11C-PiB PET/CT showed a significant CT thinning in 5 selected locations (in foveal thickness in vertical scan, in temporal scan at 1500µm, in superior scan at 500µm and in inferior scan at 1000µm and 1500µm, p = 0.020-0.045) whilst few significant CT reduction data was reported in MCI or dementia individually versus HC. However, the GEE test identified significant CT thinning in AD compared with all HC included (p = 0.015-0.046). CONCLUSIONS: To our knowledge, the present study is the first measuring CT in eyes from MCI and dementia eyes positive to 11C-PiB PET/CT reporting a significant trend towards CT thinning in MCI patients which became more pronounced in dementia stage. We support further investigation involving larger and prospective OCT studies in AD population characterized with available biomarkers to describe whether choroidal vascular damage occurs specifically in prodromal stages of AD.


Assuntos
Doença de Alzheimer/patologia , Amiloide/análise , Corioide/ultraestrutura , Disfunção Cognitiva/patologia , Sintomas Prodrômicos , Tomografia de Coerência Óptica , Idoso , Doença de Alzheimer/diagnóstico por imagem , Compostos de Anilina , Antropometria , Área Sob a Curva , Radioisótopos de Carbono , Estudos de Casos e Controles , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Progressão da Doença , Diagnóstico Precoce , Feminino , Humanos , Masculino , Neuroimagem , Variações Dependentes do Observador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Tiazóis
8.
Annu Rev Anim Biosci ; 8: 47-69, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31525067

RESUMO

Fish show extraordinary sexual plasticity, changing sex naturally as part of their life cycle or reversing sex because of environmental stressors. This plasticity shows that sexual fate is not an irreversible process but the result of an ongoing tug-of-war for supremacy between male and female signaling networks. The behavioral, gonadal, and morphological changes involved in this process are well described, yet the molecular events that underpin those changes remain poorly understood. Epigenetic modifications emerge as a critical link between environmental stimuli, the onset of sex change, and subsequent maintenance of sexual phenotype. Here we synthesize current knowledge of sex change, focusing on the genetic and epigenetic processes that are likely involved in the initiation and regulation of sex change. We anticipate that better understanding of sex change in fish will shed new light on sex determination and development in vertebrates and on how environmental perturbations affect sexual fate.


Assuntos
Epigênese Genética , Peixes/genética , Processos de Determinação Sexual/genética , Adaptação Fisiológica , Animais , Feminino , Peixes/fisiologia , Organismos Hermafroditas/genética , Masculino , Processos de Determinação Sexual/fisiologia
9.
Curr Top Dev Biol ; 134: 71-117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30999982

RESUMO

Sexual fate can no longer be considered an irreversible deterministic process that once established during early embryonic development, plays out unchanged across an organism's life. Rather, it appears to be a dynamic process, with sexual phenotype determined through an ongoing battle for supremacy between antagonistic male and female developmental pathways. That sexual fate is not final and is actively regulated via the suppression or activation of opposing genetic networks creates the potential for flexibility in sexual phenotype in adulthood. Such flexibility is seen in many fish, where sex change is a usual and adaptive part of the life cycle. Many fish are sequential hermaphrodites, beginning life as one sex and changing sometime later to the other. Sequential hermaphrodites include species capable of female-to-male (protogynous), male-to-female (protandrous), or bidirectional (serial) sex change. These natural forms of sex change involve coordinated transformations across multiple biological systems, including behavioral, anatomical, neuroendocrine and molecular axes. Here we review the biological processes underlying this amazing transformation, focusing particularly on the molecular aspects, where new genomic technologies are beginning to help us understand how sex change is initiated and regulated at the molecular level.


Assuntos
Evolução Biológica , Transtornos do Desenvolvimento Sexual/veterinária , Peixes/fisiologia , Organismos Hermafroditas , Modelos Biológicos , Desenvolvimento Sexual/fisiologia , Animais , Fenótipo
10.
Reproduction ; 154(6): R149-R160, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28890443

RESUMO

Cortisol is the main glucocorticoid (GC) in fish and the hormone most directly associated with stress. Recent research suggests that this hormone may act as a key factor linking social environmental stimuli and the onset of sex change by initiating a shift in steroidogenesis from estrogens to androgens. For many teleost fish, sex change occurs as a usual part of the life cycle. Changing sex is known to enhance the lifetime reproductive success of these fish and the modifications involved (behavioral, gonadal and morphological) are well studied. However, the exact mechanism behind the transduction of the environmental signals into the molecular cascade that underlies this singular process remains largely unknown. We here synthesize current knowledge regarding the role of cortisol in teleost sex change with a focus on two well-described transformations: temperature-induced masculinization and socially regulated sex change. Three non-mutually exclusive pathways are considered when describing the potential role of cortisol in mediating teleost sex change: cross-talk between GC and androgen pathways, inhibition of aromatase expression and upregulation of amh (the gene encoding anti-Müllerian hormone). We anticipate that understanding the role of cortisol in the initial stages of sex change will further improve our understanding of sex determination and differentiation across vertebrates, and may lead to new tools to control fish sex ratios in aquaculture.


Assuntos
Peixes/metabolismo , Gônadas/metabolismo , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Processos de Determinação Sexual , Estresse Fisiológico , Androgênios/metabolismo , Animais , Comportamento Animal , Exposição Ambiental , Estrogênios/metabolismo , Feminino , Masculino , Caracteres Sexuais , Diferenciação Sexual , Transdução de Sinais , Comportamento Social , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...